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Improved Upper Bounds on the Packet Error
Probability of Slotted and Unslotted DS/SS Systems

Brian D. Woerner, Member, IEEE, and Wayne E. Stark, Member, IEEE

Abstract—We consider a direct-sequence spread-spectrum mul-
tiple access communication system with convolutional coding and
hard decision decoding. We calculate the packet error probability
and throughput of this system. Previous bounds on packet error
probability have relied on the worst case assumption of phase
and chip synchronous interference. We present new bounds on
packet error probability and throughput for the case of both
slotted and unslotted systems. These new bounding techniques
are based on two advances: an improved Chernoff bound on the
error event probability of a convolutional code, and the use of
moment space techniques. Numerical results indicate that these
new bounds on packet error probability improve on previously
reported bounds by more than an order of magnitude. We
also examine the problem of choosing the optimum code rate
which maximizes throughput. We compare the optimum code
rate which results from the bounding technique to the optimum
code rate derived from an approximation technique. Although
the bounding technique and approximation technique yield very
different results for throughput, the resulting choice of optimum
code rate is similar.

1. INTRODUCTION

IRECT-SEQUENCE spread-spectrum (DS/SS) commu-

nication systems have found increasing application to
military and commercial communications. Much research ef-
fort has focused on the development of techniques to analyze
the performance of these systems, and there are now good
techniques available for computing bit error rate [4], [9].
However, when DS/SS is used in a packet tadio system, a
single uncorrected bit error will render an entire block of data
useless. In this case, the performance measure of interest is
packet error probability.

If multiple access (MA) interference is present, powerful
error correction coding is required for a DS/SS MA system
to achieve acceptable packet error probability. This coding
takes the form of either a block code or a convolutional code.
We further classify a DS/SS MA system as either slotted or
unslotted, depending on whether all users transmit packets
simultaneously during time slots of fixed duration.

In previous work, Pursley and Taipale [10] have computed
a bound on packet error probability for slotted systems with
convolutional coding. Storey and Tobagi [12] have extended
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these results to the case of unslotted systems. Joseph and Ray-
chaudhuri [3] have examined the packet error probability of
unslotted systems with block coding. The primary reason that
the packet error probability calculation is not a straightforward
extension of the bit error probability calculation is that bit
errors within the same packet are not independent events. In
[10] and [12], this problem is avoided by assuming a worst
case value for bit error probability. As a result, the overall
bound on packet error probability may be loose. In [3], results
are computed based on the approximation that bit error events
are independent.

In [5], Morrow and Lehnert follow a novel approach to
evaluate the packet error probability of a slotted system with
block coding. They apply the theory of moment spaces to
compute a tighter bound on the packet error probability than
the bound obtained with the techniques of [10], [12], [3],
without ignoring the dependencies which may exist between
bit error events within the same packet. This bound on packet
error probability may be used either with a true bound on
bit error rate or with the “improved Gaussian approximation”
for bit error rate which they also develop in [5]. Morrow and
Lehnert further develop these results in [6].

In this paper, we demonstrate how these techniques can be
used to improve on the bounds of [10] and [12]. Unlike 5]
and [6], we consider a DS/SS MA system which employs
convolutional coding and a hard decision Viterbi decoder
at the receiver. Using moment space techniques, we present
improved bounds on packet error probability and throughput
for both slotted and unslotted systems. We also present results
on the selection of the optimum code rate for these systems.
Throughout this paper, we assume that power control is
employed so that equal signal energy is received from each
transmitter.

The paper is organized as follows. In Section II, we describe
the system model under consideration. In Section III, we
present new, tighter bounds for a slotted system. In Section
IV, we extend those results to the case of unslotted systems.
We illustrate these new bounds on packet error probability and
throughput in Section V. Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we outline the model used in this paper
for a DS/SS packet transmission system with multiple-access
interference. We also review the techniques available for
computing bit error probability, and describe simple traffic
models for slotted and unslotted packet radio systems.

0090-6778/95$04.00 © 1995 IEEE
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A. DS/SS MA System

We consider a DS/SS MA system with binary phase shift
keyed (BPSK) signaling, and a correlation receiver. Qur model
is based on [8]. There are a total of K users transmitting over
a common channel. Associated with each user k € {1,---, K}
is a data signal by (t) and a signature waveform ay(¢) which
are functions of time. These are defined by

bi(t) = Y brtpr(t —iT) ey
a(t) = D angpr.(t—iT.), (0]
j=—o0

where {by; € {+1,—1}} is an infinite sequence of encoded
data bits, {a ;} is an infinite random signature sequence with
each chip ay, ; independent and equiprobably distributed on
{-+1, -1}, and ¢ (-) is the unit pulse function of duration T,
defined by

1, t€][0,T)
0, else.

wn(t) = { )
The duration of each encoded data bit is T, while the duration
of each chip in the signature signal is T,. As a result the
number of chips per bit is N = T'/T,, where N is a integer.

Each user generates a signal s;(¢) by modulating the data
signal by its signature signal and a carrier waveform, with the
result

s1(t) = V2P cos(wet + ¢r)ar(t)be(t), )

where P is the signal power, w, is the carrier frequency, and
¢ is a random phase, uniformly distributed on the mterval
[0, 27).

A correlation receiver receives the signal r(¢)which is the
sum of delayed versions of all transmitted signals and thermal
noise. The received signal 7(t) is

K
=n(t)+ > se(t—75) 5)

where n(t) is a white Gaussian process with two-sided power
spectral density N,/2, and 73 is a random delay, uniformly
distributed on [0,7). This channel model is illustrated in
Fig. 1. The synchronous correlation receiver recovers the
transmitted data bit by correlating r(#) with a local version of
the transmitted signal to form a decision statistic Zy,; where

(i+1)T+74
Zk,i = / T(t) COS[LUC(t~7‘k)—l—¢k]ak(t—’7‘k)dt. (6)
T +7y .

The decision statistic is used to form an estimate Ek,i of the
data bit by, ; based on the rule
s [l Zei>0

bk’l - {—1, Zk,i < 0. (7)
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Fig. 2. Slotted and unslotted transmission.

B. Traffic Models

In a packet transmission system, blocks of data are grouped-
into blocks of consecutive bits called packets. We' assume
that one packet has a duration of I encoded bits. A single
uncorrected error forces rétransmission of the entire packet of
data. We classify a packet transmission system as either slotted
or unslotted, depending on whether all active users transmiit
packets simultaneously during time slots of fixed duration.
Slotted and unslotted systems are illustrated in Fig. 2.

In a slotted system, time is divided. into -slots of duration
LT which is the duration of a packet. The number of .users
K is fixed over the duration of the entire packet. Although
the users are coarsely synchronized in that they commence
and cease transmission at approximately. the same time, they
are' not finely synchronized. The phases .{¢;} and delays
{m} of the interfering users are still modeled ‘as random
variables. We assume an infinite population of potential users,
and the number of users K that transmit during a.given slot
is a Poisson random variable with probability mass function
px(k), where

k
() = SEREG) ®

and the expected number of users G is called the offered traffic.
A packet is said to be successful if, after error correction from
the convolutional code, there are no errors in the packet.

In an unslotted system, users commence ‘and cease trans-
mission independently, and the number of interferers can vary
during the transmission of a packet. The length L. of each
new packet is modeled as being exponentially - distributed
with mean I data bits as in [12]. - Since:-actuat packets
lengths must be integers, we use a discrete approximation to
an exponential distribution for our numerical ‘results, taking
PrlL =1 = p()) = fl . Texp—=z/Ldz. New users
from an infinite population begin transmission according to a

k=01,
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Poisson process with arrival rate A. Since packets arrive in the
system according to a Poisson process and have exponentially
distributed length, the distribution of active users is identical to
that for an m/m /oo queue. It is shown in [1] that the number
of users at any given time has the Poisson distribution of (8),
with G = AL.

C. Performance Measures

This section discusses the performance measures of interest
in this paper. It is convenient to condition the probability
of bit error on the delays 7 = {r,---,7x} and phases
¢ = {¢1, -+, dx}. We express this conditional probability
as p (7, @) = Pr[IA)k,i # by, | 7,¢]. Note that the random
processes n(t) and ai(t) are independent from one data
interval to the next. Therefore, when conditioned on the delays
7 and phases ¢, all bit error events are nearly independent of
one another.! The average bit error probability is found by
taking the expected value of px (7, ¢) over these phases and
delays

px = Erglox (T, 4)]- ®

In [4], a technique is presented for efficiently evaluating the
multidimensional integral implied by (9) to an arbitrary level
of accuracy.

It is shown in [10] that when all users have equal signal
power the worst bit error rate occurs when all multiple-access
interferers are phase and chip synchronous (7= 0 and ¢ = 0)
with the desired signal. We denote the bound on px (7, ¢)
obtained from this fact as oY% and write

PK(’T, ¢) < pIU{ = pK(O’O),

If it is phase and chip synchronous, the multiple access
interference has a binomial probability distribution and p%
can be computed from the formula

V7, ¢. (10)

(K-1)N (K — )N
= ( j )2‘1‘K>Nq(j), (11)
=0
where ¢(j) is given by
N PT[ , 2% —(K-LN
a0) —Q<\/ e G D (12

and Q(-) denotes the standard Q-function. Since the bound 0%
is valid for all 7 and ¢, this bound can be used to avoid the
issue of how px (7, ¢) depends on the phases'and delays. This
is the approach followed in [10] and [12]. There may be a large
gap between the bound on the bit error probability obtained
from (11) and the actual bit error probability evaluated via (9).

IThere will be one chip ay ; from each interferer which overlaps two
adjacent bits by ; and by ;1. For K = 2, the bit error events are still
independent; however, for K > 2 adjacent bit error events are not strictly
independent. Alternatively, we can consider a correlation receiver which uses
only N — 1 chips, discarding the last chip of each bit. If p(7,¢) is a
monotonically decreasing function of NV, then the perfomlancc of this receiver
will upper bound the performance of the correlation receiver which uses
N chips. Note also that for X = 2, infinite SNR, and 7 and ¢ randomly
distributed, no bit errors will occur.
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We can relate the throughput of both unslotted and slotted
systems to the conditional packet error probability Pg(k)
given that there are k simultaneous transmissions. Let X; be
the number of packets successfully transmitted during the first
i slots. The normalized throughput S is defined as

ro.. )(z
5= N zl—lgloE [T}

where S is normalized for the rate r of the convolutional code,
and bandwidth expansion N of the DS/SS system. For a slotted
system, the number of active users is constant throughout each
packet duration. As a result, the throughput of a slotted system
may be given by

(13)

oo

2 kP

k:

k (k)[L — Pr(k)] (14)

where Pg(k) is the conditional probability of packet error
given k users. For an unslotted system we must compute the
normalized throughput by taking the expectation over both the
number of interferers and packet length.

III. SLOTTED SYSTEM THROUGHPUT

In this section, we develop a new and tighter bound for the
packet error probability and throughput of a slotted DS/SS MA
system with hard decision convolutional coding. As discussed
in Section II, it is shown in [10] that when all users have equal

“signal power the worst bit error rate occurs when all multiple-

access interferers are phase and chip synchronous, and the
probability of error is given by (11).

If there are L bits in a packet, Pursley and Taipale [10]
show that the packet error probability Pg(K) for K = k
simultaneous transmissions is upper bounded by

Pe(k) < 1—[1 = Pu(pu(r, 91"

where P,(p) is the error event probability for the convolutlon—
ally coded system with bit error rate p. Since the bound oY
is valid for all 7 and ¢, the bound can be used to avoid the
issue of how pi (7, ¢) depends on the phases and delays. In
[10], the upper bound of (11) is used to evaluate (15), giving
an upper bound which is valid for all 7 and ¢

15)

Po(k) < Ppa(k)=1-[1-Pu(e)]"  (16)

and the average packet error probability Pz may be upper
bounded by
=" Po(k)px (k) an

k=0

Pg £ Pm

where we denote by Pgy the upper bound that is given in [10]
for the probability of error conditioned on K.

We improve on this upper bound Pgi(k) in two ways.
First, we introduce a new tighter bound on the error event
probability of a convolutional code. We call this bound the
Improved Union Chernoff Bound. Next, we apply moment
space techniques to achieve a tighter upper bound on packet
error probability.
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The upper bound on P,(p) employed in [10] is due to Van
de Meerberg [13] and is based on the transfer function T'(D)
of the convolutional code. This bound can be expressed as

R < (P ) {3r@ +7(-D)
(18)

1
+3DIT(D) - T(_D)]}D:m

where n, = [MJ is half the free distance of the convo-
lutional code.

Another tighter upper bound on the probability of an error
event maybe derived as follows. The transfer function may
be expressed as an infinite series T'(D) = E;‘idﬁ t; D*. The
probability of an error event may be upper bounded in terms
of the coefficients {¢;} as

(o]

Pup)< > P, (19)
1=dfree
where P; for 7 odd is
r=3 (j.)pf(l — )i (20)

il
I="z

and for i = 2j even, Pa; = Py;_1. We can break the union
bound into two parts

M oo
Pup)< Y tPit+ Y 4P @1
i=dgee i=M—+1
where M is a large integer. Since P, < D*
M co )
Pup) < > tiPit > uD (22)
i=dg oo i=M—+1
= > tPi- > &D'+ Y D' (23)
i=dfree i=dfree =dfree
M .
< > (P - DY) +1T(D) , (24)
i=dfree D:2\/m

where we have added and subtracted identical terms in (23)
before expressing the final bound of (24) in terms of the
transfer function T'(D). An algorithm for computing the
transfer function is given in [7]. Any number of terms of the
expansion {t;} can be computed from the transfer function.
Furthermore, P; can be computed in a recursive fashion. We
refer to equation (24) as the Improved Union-Chernoff Bound,
and we refer to the previous bound on error event probability
(18) as the Van de Meerberg bound. An Improved Union-
Chernoff bound can also be derived for the probability of bit
e1Tor.

Our next step is to examine the difference between the
average and worst case probability of bit errors. Because of the
large gap between the bound en the bit error rate computed
from (11) and the actual bit error probability pz computed
from (9), the new bound we obtain below can be significantly
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tighter than the worst case bound Pg;. Our result is based on
the following theorem from [2]: '

Moment Space Theorem [2]: Let X be a random variable
with a probability distribution function Fx (z) defined over a
finite closed interval I = [a,b]. Let g1(z), g2(2),- - -, g ()
be a set of V continuous functions defined on I. The moment
of the random variable X induced by the function g;(z) is

ms = Elgi(X)] = / gi(z)dFx (). 25)
I
Now denote the moment space M by
M = {rn = (ml, “ee ,mN) S %N|m1
= /gi(x)de(x), i=1,---,N}, (26)
I

where Fx ranges over the set of probability distributions
defined on I, and RV denotes N-dimensional Euclidean space.
Then M is a closed, bounded, convex set. Now let H be the
convex hull of the curve (g1(z), - - -, gn()) traced out in RY
for z € I. Then

=M. 27

The convex hull of all moment-defining functions traced out
in Euclidean N-space contains all of the moments defined by
(25).

We take the approach that both pr(7,¢) and Pg(k) are-
random variables. Fig. 3 shows how these two random vari-
ables are related. The packet error probability Pg is some
fanction f(p(r,¢)). The Moment Space Theorem [2] tells us
that the expected value of Pg lies within the intersection of the
convex hull generated by f(p(r, ¢)) with the expected value
of p(7,¢).

The new, tighter bound on Pg(k) is given by the following .
theorem. R

Proposition 1: Consider a slotted DS/SS MA system with
K = ksimultaneous transmissions. and let ¢ be a real number
such that

fo) =11 Pu(p)]* @8

is a convex function of p on the range [0, ¢|. Then packet error
probability may be upper bounded by

Px 54 . ‘
Pr(k) < Ppa(k) = {’JgPEIU‘C)’ Pi €10,0)

29
I, pY € 10,¢). @9
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Proof: 1t is obvious that packet error pfobability is al-
ways upper bounded by 1. For p¥ k € [0, ¢], the random variable
px(7, ¢) lies in the interval [0, p{] and has expected value p.
From [10] the packet error probability is upper bounded by a
function f(px(7,$)), where f(p) =1 — [1 — P.(p)]*. Let H
be the convex hull in %2 of all points in the.set {(z1,x2) :
z1 = pr(7,¢),z2 = f(pr(7,¢))}. Then the Moment Space
Theorem [2] requires that Pg(k) < E[f(px(7,¢)] be upper
bounded by a least one point in the intersection of H and
x1 = pg. Since f(p) is a convex function of p for p§ € [0,¢],
the convex hull A is upper bounded by a straight line from the
point (0, 0) to the point (pY, f(p¥)). Therefore the intersection
of H with moment p; consists of {(z1,2z2) : 1 = Pk, T2 €
[f(5K)), ”" % Pg1(k)]}. The theorem follows.

We call the resulting bound on

packet error

probability Pre(k). The restriction that f(p) be a convex

function for p € [0, c) is mild. In most cases f(p) is convex
for all p of interest. Normalized throughput for the slotted case
is given by (14). Truncating the summation in (14) results in
a lower bound on achievable throughput, as does using an
upper bound on Pg(k). For the numerical results presented
here, we have truncated all terms for which Pg(k) > 0.99.
We call the bounds on throughput obtained by using Pg; (k)
and Pgo(k), Sy and Sy respectively.

IV. UNSLOTTED SYSTEM THROUGHPUT

In an unslotted system, the number of users varies with
time. LetK () be the number of users transmitting during the
ith data bit of the packet. We assume that K (¢) < Kpax for all
¢ and some value of K pay. If K(¢) does exceed K max, then we
will generate a lower bound on achievable throughput. Storey
and Tobagi [12] show that the bound of (11) can be extended
to the case of an unslotted system. If we let L; equal the
number of data bit intervals i for which K (¢) = k (implying
> & Lr = L), then we have [12]

L

1= [~ Pulorc (m:9)] 30)

Zn i

H [1— Pu(poi(r, )] G1)

= L
<Ppi=1- ] [1-FuleiD]™ 32)

k=1

We have assumed that the number of interferers K (i) = k is
constant for the duration of an error event. The approximation
in (31) results from this assumption. In [12] this assumption,
called the “memoryless approximation,” is shown to be valid
through simulations.

We obtain a tighter bound on packet error probablhty by
means of the following proposition.

Proposition 2: Consider an unslotted DS/SS MA system
with convolutional coding, and hard-decision decoding. Let
{L1 = L, Ly = l3,---,L = ke HBE = f— for

k€ {2, Kmax} Bmax = max{Rz, -, RK,., ), and let

Kimax
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¢, be a set of real numbers such that
Kmax

9(p) = 9(p2, s prm) = 1= [ 1= Pulon)]™  33)
k=1

is -a convex function of each p; for pr € [0,ck),k €
{2,-++, Kmax}. Then the packet error probability is upper
bounded by

Pg < Ppo
— Rumox|[Pe1 — Pe(1)] + Pe(1), pY € [0,cx]Vk
1, else.

(€2))

In practice, p% € [0, cx] for almost all cases of interest.
Proof- It is obvious that packet error probability
is no more thanl. We consider the case when g(p)
g(p2, ", PKmax) 18 @ convex function for each p, €
[0,ck),k € {2, -+, Kmax}. First suppose that I; =0 (K(i) >
2 Vi). Let p(7,¢) = (p2(7, )y, PKmar (T qb)) be a random
vector which lies in the region V = {(2,, TKpay) : Tk €
[0, p¥]} in REm==x=1 From (31), Pg is upper bounded by a
function g(p(r, 4)), where g(p) = 1 — [T<= [1 = Pu(pa)]*.
Let H be the convex hull in REme< of all points in
the set {(1, ) TKumar) 21 = g(p),zx = pp for
k = 2,--+,Kmax}. Then the moment space theorem [2]
requires that Pp = E[g(p)] lie in the intersection of H and
{(x2, -, Tro) s Tk = P for k=2, -+, Kypax}- ’

Next, we show that if Pg lies in this intersection, then
Pg < RmaxPr1. Recall that g(p(T,¢)) is a convex func-
tion of cach variable pg(7,¢), and that g(0) = 0 and
g(py,-- ,pK ) = Pg is the maximum value of g(p) for
p € V. Now “consider any point (§,72, - »PKme.) € H
and draw a line from the origin to that point. The line is
described by the equation § = c2p2 + *** + CK\puu PKomax 10T
some set of coefficients {cz, “+,CK.. t- Now consider the
point czp§ + - + CKonn P %.nay < Pe1. This implies that for
some value of - < ~p‘—’— for at least one k € {2, -, Kmax}-
It follows that PE is bounded by Pg < RuyaxPE1.

Now relax the condition that I; = 0. Note that when no
multiple access interference is present, the occurrence of a bit
error in any interval is independent of the occurrence of a
bit error in any other interval. Therefore the probability that
an error occurs when no interferers are present is given by
1-[1 - Pu(p)]* € 1—[1 = Pup)]* = Pp(1). The
dependence of Pg on the function g(-) is exactly the same
as before, except the bound must be shifted up by Pg(1).
Proposition 2 follows. d

Let Pg,; be the probability of error in an unslotted system
for a packet of length [, and let pz(I) be the probability mass
function of packet length L. Given the initial distribution of
users and the rates at which packet transmissions are initiated
and completed, we can use a Markov chain to compute the
tighter bound on packet error probability Pz, for each ! from
(34). The overall packet error probability is then

Z pr()Pg2,. (35

=1

Pg < Ppy =
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TABLE I
A CompARISON OF Pg(K) BounDs FOR SLOTTED DS/SS MA (Rate
1/2, CONSTRAINT LENGTH 7 CONVOLUTIONAL CODE, N = 31)

.SNR (dB) | K | Pm Pz Prs
10 3 | 22665 |524e7 |5.07e7
5 | 405e8 |1.77e4 | 1.59e-4
12 3 {14767 | 15609 | 15459
5 |296ed |7.5te6 |7.1le6
15 3 | 1.07e-10 | 5.51e-13 | 5.48¢-13
5 | ldde5 | 2107 |204e-7

We can truncate (35) to a finite number of terms by assuming
that Pgo; = 1 for large [. The normalized throughput S can
be computed from

P&
S = i ;pL(l)‘i[I — Pg,. (36)

Truncating (36) to a finite number of terms will result in a
lower bound on the achievable S.

V. NUMERICAL RESULTS

We have used the new bounds to compute packet error
probability and throughput for a DS/SS MA system employing
the standard rate 1/2, constraint length 7 convolutional code
with free distance 10. The transfer function of this code is
given in [7]. For this convolutional code with L = 1000,
the function f(p) is convex for p .€ [0,0.04097] if the
bound of Van de Meerberg is used for P,(p), and convex
for p € [0,0.04330] if the Improved Union—Chernoff bound
is used. .

Table I compares the several bounds on packet error prob-
ability. The bound from [10] is denoted Pg;. The new bound
obtained from applying Proposition 1 with Van de Meerbergs’s
bound on error event probability P,(p) is denoted Pgy, while
the bound obtained by using the Improved Union—Chernoff on
P,(p) is denoted Pgs. Results are shown for K = 3 and 5,
N = 31 and signal-to-noise ratio (SNR) equal 1910, 12 and
15 dB. In each case, Pgs is tighter than Pg; by over an order
of magnitude. The bound on‘the packet error probability that
results from the Improved Union—Chernoff bound on P, (p) is
a modest improvement on Pgy.

Next, we consider a system with N = 63 andSNR = 8
dB, and use only the Van de Meerberg bound on P,(p). Once
again, a rate 1/2, constraint length 7 convolutional code is
used. Fig. 4 compares the two bounds Pgi and Pgs for a

slotted system with L = 1000 and K ranging from 2 to

12. Once again, the new bound is significantly tighter over
a wide range of multiple access interference. Fig. 5 plots
the normalized throughput S versus the offered traffic X
for this same slotted system. The bounds S; and S, are
obtained by substituting Pg; and Pgs respectively into (14).
For lightly loaded systems, the two bounds on throughput
coincide, because packet errors have an insignificant effect on
system throughput for such systems. For more heavily loaded
systems, there is a large gap in the throughput predicted by
the two bounds.
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Fig. 6. Packet error probability versus offered traffic for unslotted DS/SSMA.

Figs. 6 and 7 report packet error probability and normalized
throughput for an unslotted system with I = 1000. Once again
the new bounds Pgs and Sy are significantly tighter than the
bounds Pg; and Ss. :

Next, we explore the relationship between the choice’ of
error correcting code and system performance. We apply the
techniques of the previous section to evaluate the through-
puts| Sy for a large number of different code rates. For the
comparison, we will compare the results.for our bounding
technique with an approximation technique described in [11].
We will denote this approximation to throughput as Sapp- For
the results reported here, we examined a slotted DS/SS MA
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Fig. 8. Normalized throughput S versus offered traffic. G for several code
rates using the lower bounding technique.

system with processing gain N = 63 and the number of users
ranging from K = 0 through K = 60. Once again, we assume
that E; /N, = 8 dB, and that each packet consists of L = 1000
information bits to which coding is added.

We examined convolutional codes with rates ranging from
r = 1/8 to 2/3. In order to insure that the codes were of
comparable complexity, we held the number of states times
the number of branches emerging from each state constant at
64 for each code. A rate 1/2 constraint length 6 code served
as the baseline system.

Figs. 8 and 9 plot the throughput S versus offered traffic G
for both the lower bound on throughput and the approximation
technique, respectively. For each different code, the throughput
increases to some maximum level as G increases, and then
decays once the error correcting capability of the code is
exceeded. The peak throughput occurs at a higher traffic level
for the more powerful (lower rate) codes.

With one exception, the lower bound reports smaller values
for throughput than the approximation technique. The dif-
ference in reported throughput becomes quite large for the
condition of high offered load. In practice, this large through-
put is obtained at the price of frequent packet errors and
retransmissions. Fig. 10 plots the maximum throughput S*(r)
of any system with code rate 7. Note that both techniques
predict that the system should attain its maximum level of
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Fig. 10. Maximum normalized throughput S*(r) as a function of code rate
r for both systems.

throughput when r = 1/4. In the case of r = 2/3 the
approximation is actually less than the lower bound.

Fig. 11 plots throughput versus offered traffic, assuming that
in each case, the code rate r is selected to optimize system
performance for the value of G. For low levels of offered
traffic, the lower bound and approximation track one another
closely. For large G, the approximation predicts dramatically
larger throughput levels. However, the optimum codes rates
r*(G) predicted by the two techniques for a given G remain
remarkably close to one another throughout the entire range
of G. These optimum code rates are displayed in Table II. As
G increases, the predicted optimum codes rates are reasonably
close, even though the predicted throughput is dramatically
different. The lower bound method suggests only a slightly
more conservative choice for large G. This implies that the
system performance is relatively robust with respect to the
technique used to select the code rate.

VI. CONCLUSIONS

In this paper, we have derived new, tighter bounds on the
packet error probability of a DS/SS system with convolutional
coding which improve on the bounds of [10] and [12]. These
bounds were based on the use of an Improved Union—Chernoff
Bound for the error event probability of a convolutional code
and on the application of moment space techniques. Bounds
were derived for both the cases of slotted and unslotted



3062

0.1

0.09

0.08

5 0.07
o

0 10 20 30 40
Offered Traffic G

Fig. 11. Maximum normalized throughput using rate 7*(G) as a function
of offered traffic G for both systems.

TABLE II
OpTIMAL CHOICE OF CODE RATES PREDICTED BY
THE Two TECHNIQUES FOR SELECTED VALUES OF G

G | r(G) predicted | r* (@) predicted

by bound by approximation
1.0 2/3 - 1/2
2.0 2/3 1/2
5.0 1/2 1/2
10.0 2/5 2/5
15.0 1/3 1/3
. 20.0 1/4 1/3
25.0 1/5 1/4
30.0 1/6 1/4
35.0 1/8 1/5
40.0 1/8 1/6

systems. In each case, the bounds were approximately an order
of magnitude tighter than the previous bounds.

We have used our bounds to determine the optimum code
rate in order to maximize throughput for a system with
convolutional coding.” Results indicate that the optimal code
rates indicated by this new bounding technique agree well with
the optimal code rates which are indicated by approximate
techniques even though the two techniques produce dissimilar
results for throughput.

Overall, we find that the assumption of phase and chip
synchronous interference is extremely pessimistic. As a result,
it may be possible to achieve higher levels of throughput
for a DS/SSMA system than has been previously reported.
Furthermore, we conjecture that future research may lead to
still tighter bounds than the ones reported here.
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