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Performance of FHSS Systems Employing Carrier
Jitter Against One-Dimensional Tone Jamming
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Abstract—In this paper, the performance of a frequency-hop
spread-spectrum system employing carrier jitter against one-
dimensional tone jamming (» = 1 band multitone jamming) is in-
vestigated. First, noncoherent BFSK signaling under continuous-
wave (CW) tone interference with arbitrary frequency offset
is analyzed. A closed-form expression is derived for the error
probability when there is one interfering CW tone and the
background noise is negligible. When the background noise is
significant, an expression involving one numerical integration is
derived for the probability of error. It is shown that an interfering
CW tone with power less than that of the signal can still cause
errors with significant probability for certain ranges of carrier
offsets. Next, we apply these results in analyzing the performance
of a FHSS communications system under one-dimensional tone
jamming when the communicator pseudorandomly jitters his
carrier frequency from hop to hop. Two different methods of
carrier jittering are considered. We find that one of the schemes
offers approximately a 3 dB gain in signal-to-noise ratio over a
system without carrier jittering while the other scheme offers no
significant gain.

[. INTRODUCTION

N THIS PAPER, the performance of a frequency-hop

spread-spectrum (FHSS) system employing carrier jitter
against one-dimensional tone jamming! is investigated. In
order to achieve this task, we first analyze the error per-
formance of noncoherently demodulated orthogonal Binary
Frequency Shift Keying (BFSK) under CW tone interference
and additive white Gaussian noise (AWGN.) The case when
the frequency of the interfering CW tone falls exactly on
that of one of the two BFSK frequencies was investigated
in [1]-[5]. Here, a more general case where the interfering
CW tone may have an arbitrary frequency offset from the
BFSK signals is considered. This may be the case when there
is multipath with Doppler shift or when the communicator
is under intentional tone jamming with imperfect knowledge
of the communicator’s band-structure. First, a closed-form
expression for the probability of error is derived when there
is one interfering CW tone and the background noise is
negligible. Numerical evaluation shows that an interfering
CW tone with less power than that of the signal can still
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! Also referred to as n = 1 band multitone jamming [10].

cause errors with significant probability by selecting a suitable
frequency offset. Next, an expression involving one numerical
integration is obtained for the probability of error when
the background noise is not negligible. Finally, a discrete-
time simulation model is derived when there are multiple-
interfering CW tones.

These results are applied in analyzing the performance of
a FHSS communications system under one-dimensional tone
jamming when the frequencies of the jamming tones have
arbitrary offsets from those of the BFSK signals used by the
communicator. This situation may occur when the jammer
does not have an accurate information about the band structure
of the communicator or when the communicator intentionally
jitters his hopping frequencies pseudorandomly from hop to
hop. It was argued loosely in [8] that when this is the case,
the effectiveness of the tone jammer is expected to be reduced
by approximately 3 dB. We show that this is indeed true when
a proper carrier jittering scheme is employed.

The organization of this paper is as follows. First, in Section
I1, we give a description of the communications system and the
channel model being considered. In Section III, we analyze the
error performance of noncoherently demodulated (orthogonal)
BFSK signaling under CW tone interference with arbitrary
frequency offsets. In Section IV, we apply the results of
Section III to the analysis of two FHSS systems employing
carrier jitter under one-dimensional tone jamming. In Section
V, we give numerical results and conclusions are drawn in
Section VI

II. SYSTEM AND CHANNEL MODEL

The communications system considered in this Section
and the following is a standard narrowband communications
system employing BFSK with noncoherent demodulation. The
communications channel is degraded by AWGN and a set of
CW tones with arbitrary frequencies. A sequence of equally
likely binary symbols b; € {+1, —1} from the source is BFSK
modulated and transmitted over the waveform channel. The
complex baseband equivalent of the transmitted signal s(¢)
during the transmission of symbol by in time interval [0,7")
is given as follows,

s(t) = V28 exp(j2rboA ft + js) (1)
where % denotes the bit rate, j = /—1. S denotes the signal
power, 2Af = % is the frequency separation between the two
BFSK frequencies and ¢, is a random phase introduced by
the modulator which is assumed to be uniformly distributed
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on [0, 27). The complex lowpass equivalent signal seen by the
receiver during the time interval [0,7') is then,

N
)+ > Ji(t) + n(t) )
i=1

where n(t) is a complex lowpass AWGN process with double-
sided power spectral density Ny and J;(t) is the complex
lowpass equivalent of the ith interfering CW tone given by

r(t) = s(t

/28
Ji(t) = o exp(j2nd fit + jbs). 3)

Here, o; > 0 denotes the ratio of power between the com-
municator’s signal and the ith interfering CW tone, § f; is an
arbitrary frequency offset and ¢;’s are independent random
phase terms assumed to be uniformly distributed on [0, 27).

The receiver is the standard noncoherent demodulator op-
timal under AWGN [6], [10]. To decide which symbol was
transmitted in the interval [0, T'), the receiver first computes
two decision variables |U;| and |U_;| where

17 :
U = m/o r(t)exp(—j2nlAft)ydt 1 =-1,41. (4

The receiver decides that by = +1 was transmitted if [U,,]| >
|U_1| and vice versa. Using (2), (3), and (4), it can be shown
that U; and U_; can be written as follows given that by = +1
was transmitted:

| = el O”_%>gmﬂﬂm—@+zl
&)
Mo 1 .
U, = 3 i+ = Jbitim(pitsz) _ 6
1 ;\/a:smc<u + 2)6 + 23 6)

where p; = 6 f;T is the normalized frequency offset of the sth
CW tone and sinc(z) = ﬂ% Also, z;’s are independent
complex Gaussian random variables with zero mean and
variance equal to 1 /(%}) where E, = ST is the energy

per transmitted binary symbol.

III. PROBABILITY OF ERROR

A. One CW Tone Interferer and No Background Noise

We begin the analysis of the probability of error with the
simple case when there is one interfering CW tone (N = 1)
and the background thermal noise is negligible. For this case,
the decision variables are given as

|U1| =

: 1 - o
eis 4 ﬁsinc (M _ %)e.ﬂbl"’]ﬂ'(ﬂ_% l (7)

1 1\ .,
|U_4| = lﬁsmc(“ + 5)eJd>1+J7r(u+%) ) 8)

Note that since |U;] = |U;e??|, multiplying (7) and (8)
by appropriate phase terms, we may write the two decision
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variables as
. 1 1
— |ed® 4 _—_gi — - 9
|Uy| = [e7® + \/_smc(p 2>~ 9)
1

U_4 —‘ smc(u-ﬂ- )‘ (10)

|U-1] 7a
where ¢ = (¢ — ¢1 — w(uu — 3)) considered modulo 27 is a

random variable uniformly distributed on [0, 27). Hence, the
probability of error as a function of y and o is given by

P, 1 (i, ) = Pr{|Us] < {U_4|lbo = +1}

= Pr{|U1* < |U-1/*|bo = +1}
=Pr {sinc (p - —;—) cos(¢) < h(a,,u)} (13)

(1D
(12)

where

h(a, p) = ﬁ [sinc2 (p + —;—) — sinc? (u - %) - a}.

(14)

For the special case when p = %, i.e., the frequency of the
jamming signal coincides with that of the desired signal, (13)
reduces to

Peyl(%,a) =Pr {cos(¢) < - 2\/_(1 + a)} =0, Va>0
(15)

and when y = —%, i.e., the frequency of the jamming signal

coincides with the BFSK frequency corresponding to by = —1,

(13) reduces to

(16)

Pe,l(—%,a) —Pr{0<(1-a)}

which is equal to 1 when a < 1 (interfering signal has larger

power than the intended signal) and 0 when o > 1 as expected.
Otherwise, calculation shows that (13) can be written as

Pos(pa) = P'(u, ) -I(Sinc(u - %) > o)

+(1- P'(p,0)) -I(sinc(u - %) < 0) a7

where
rcos Hg(p, @) 9w, ) <1
P'(p,a) =10 9(p, @) > 1 (18)
1 g(p,a) < -1
and
L2 1 -2 1
« — sInc + 5) +smc(p— 5
9, @) = ity tsnclu=a) g
2y/asinc(p — 3)
Here, I(C) = 1 if the condition C is true and O otherwise.

By symmetry, the probability of error when by = -1 is
transmitted is given by P, _1(u, @) = P. 41(—p, a). Hence,
the average probability of error is given by

1
o Pe,+1(p'7 a) + Pe,+1("u'a Ot)] (20)

Pe(p,a) = 2[
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For the case when 4 is a random variable, we may simply
integrate (20) over the distribution of y to find the average
probability of error as

r@= [ ra

—0o0

a)pu (i) dp (21)

where p,,(-) is the probability density function of the normal-
ized frequency offset .

B. One CW Tone Interferer and Background Noise

Now we consider the case when there is one interfering CW
tone and the background noise is not negligible. In this case,
the two decision variables are given as

; 1 1\ . ; 1

[Un] = |e?® + —=sinc (M - E)emﬂ”(’“i) + 2| (22)
I\ Sy s )

U_{| = ‘—smc(u + 5)61%4—]#(#4—5) + 24| (23)

Muitiplying by appropriate phase terms, we have

64 g 1 —i(p1+a)
|Uy| = |e?? + ﬁsmc n=g + z1e7 91 24)
1 .

U_1| = ‘—smc (u + 5) + z_qe” (B Hh) (25)
where ¢ = (¢ —¢1 —a), a =n(u— 3) and b = w(p + 1).

Since z;’s are spherically symmetric random variables, we may
replace z1e77(91+%) and z_1e73(¢1+%) by 2, and Z_; where
the statistics of 27, Z_; are identical to those of z; and z_;.
Hence, conditioned on u, we may write,

: 1 1
|U1| = |e?® + ﬁsinc<u - 5) + 4 (26)
1
[U_4| = l—smc(u—k ) +2. @7

and ¢ is a random variable uniformly distributed on [0, 27)
independent of Z;.

Note that Uy ; and U_; are sums of independent spherically
symmetric random variables, and thus they are themselves
spherically symmetric [7]. Now, we may use the following
known result for spherically symmetric random variables to
compute the probability of error [1, 6].

Theorem I: Let X, Y be independent spherically symmet-
ric random variables. Then

_/ B (s) 22 4o
0 ds

where ® x (s) and ®y (s) are the characteristic functions of X
and Y, respectively.

The characteristic functions of U,y and U_; can be com-
puted to be

Pr(|X| <|Y]) = (28)

D41(5) = ¢ 5 Jo() o (s (11:))
®_1(s) = ™5 Jo(sfp(. )

(29)
(30)
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where v = % denotes the signal-to-noise ratio, fp(p, @) =
—=sinc(p+ 3) and fo(p, ) = %smc( 3)- Also Jo(-) is
the Bessel function of the first kind of zeroth order defined as
Jo(2) = £ [, cos(zsin(8))dé [9]. Applying Theorem 1 and
after some algebra, the probability of error conditioned on p
and o may be derived as

Pe(u,a):/o D(s,p,a)ds (3D

where

B(s, 1, @) = €= 5 Jo(5) Jo( fm (11, )
x [%J()(sfp(u,a))+fp<u,a>J1(sfp<u,a>> .
(32)

An alternate form for the conditional probability of er-
ror P.(u,a) may be derived as follows using the fact that
|Uy|, |[U-1]| given by (26)—(27) conditioned on ¢ are Rician
distributed.

2
Pu(pa) = /0 Pu(p, o, 8)db (33)

where

Pe(p, o, ¢)
= Q(\/vfz (1o 00), V(1 + f2 (s @) + 2 fm (. @) cos(p )))

+—exp<2[1+f2(/h a) + (i)

2
2. cos(0)]
x 1o (1fp(, ) VI + F2.0 @) + 211, ) c05(6) ) (34)

and Q(-,-), Iy(-) are respectively the Marcum-Q and the
modified Bessel function of the zeroth order {9].

C. Multiple CW Tone Interferer and Background Noise

In this case, the decision variables are the magnitudes of
Uy and U_; given by (5) and (6). Here, |U;| and |U_4|
are not independent and hence Theorem 1 does not apply.
The probability of error for this case may be estimated by
performing discrete-time Monte Carlo simulations using (5)
and (6).

IV. APPLICATIONS TO FHSS COMMUNICATIONS
SYSTEM UNDER ONE-DIMENSIONAL TONE JAMMING

Here, we apply the results derived in the previous sections
to the analysis of a FHSS communications system under one-
dimensional tone jamming. Specifically, we consider the case
when the jammer is not aware of the exact band-structure of
the communicator. That is, the jammer does not know the
exact frequencies of the BFSK signals being used by the com-
municator in the spread-spectrum bandwidth. Hence, the one-
dimensional tone jammer which places at most one interfering
CW tone per slot is not able to place its CW tones precisely
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Fig. 1. Location of BFSK signal frequencies for the FHSS system.

on the frequencies of one of the BFSK signals used by the
communicator as is the usual assumption when analyzing the
performance of FHSS systems under tone-jamming [10]. This
situation may occur when the jammer does not have enough
knowledge about the communicator’s system (optimistic from
the communicator’s viewpoint) or when the communicator
intentionally jitters its carrier frequency in a pseudorandom
fashion from hop to hop deterring the jammer from finding
out the exact frequency location of the transmitted signal.

We consider a FHSS system {10] using a bandwidth of Wgg
Hz operating over a channel dominated by a one-dimensional
tone jammer so that the background noise may be neglected.
One binary symbol is transmitted per hop using orthogonal
BFSK with signal power S. The transmitted signal during a
hop can be written as follows:

s(t) = V25 cos (27r (fc + frn+ ﬁ)t + ¢s)

9T 35)

where f. is the main carrier frequency, f, € {0, %, %,...,
2—("1,;12} is the hop frequency offset with respect to f. and 23:_;
is the frequency offset from f. + f;, due to BFSK modulation
of data symbol b;. The locations of the BFSK frequencies are
depicted in Fig. 1. The jammer has power J which is divided
into @@ CW tones. The jammer distributes these tones over the
bandwidth Wgg such that there is at most one CW tone per
frequency slot.

We consider two different schemes for carrier jittering. For
both schemes, it is assumed that the jammer places its CW
tones at :I:ZLT from f. + fr. In the first scheme (Scheme
I,) an additional éf,, Hz of bandwidth is allocated to each
slot and the hop frequency is given a uniform distribution on
[ — 2f=, +2L=] from the center of the slot. The transmitted
signal during a hop in this case is given as follows:

s(t) = V2§ cos (271'(]’c +fn+6f+ ;—})t + ¢3) (36)
where f, € {0, 2+28fm, 2+(q=1) §fm, ..., X +6f,)
and §f is a random variable uniformly distributed on [—
%ﬂ, +%ﬁ]. The range of possible BFSK frequencies for this
scheme is shown in Fig. 2. For a fixed available bandwidth,
this results in a smaller number of slots available for the
communicator. Hence, for this scheme, the jammer requires
larger power for each of its CW tones to compensate for
the frequency offset but requires a smaller number of them

2 A frequency slot is defined as the % Hz of bandwidth centered about a
given hop frequency fc + fr.
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Fig. 2. Location of the BFSK signal frequencies for the FHSS system using
carrier jittering Scheme L

because of the bandwidth expansion of the communicator due
to jittering. The second scheme (Scheme II) is identical to the
first scheme except that additional éf,, Hz of bandwidth is
not allocated to the slots. For this case, bandwidth expansion
due to carrier jittering is negligible but the possibly adverse
effects from jammers’ CW tones falling in the neighboring
slots must be accounted for. Performances of the two FHSS
systems employing carrier jitter under one-dimensional tone
jamming are evaluated in the following subsections.

A. Scheme I

An equivalent model of this system for a particular jammed
hop is a BFSK modulated signal jammed by a CW tone whose
normalized frequency offset denoted by p is a random variable
with a uniform distribution on A = [3(1 — pm), $(1 + tm)]
with probability 1 and B £ [1(~1— pm), 3(—1 + ptm)] With
probability 1 where pi, = 8fnT. Due to the extra §f,, Hz
of bandwidth allocated to each slot for this scheme, we may
safely ignore the effect of jammers’ CW tones landing on the
neighboring slots.

Without frequency jittering, the probability of a hop being
hit by the jammer for the system under consideration can be

shown to be [10]
2
P, = min {1, _a}
v

where a = —J/S—Q, v = #& and Ny = 7=+ When the
communicator jitters its hopping frequencies as described
above, taking into account the bandwidth expansion due to
the additional éf,, Hz of bandwidth allocated for each slot,
the probability of hit is given as

(37

Ph,jitter = (1 + ,le)Ph (38)

The jammer’s goal is to choose the factor a to maximize the
probability of error. Without loss of generality, we assume that
b; = +1. Then the average probability of error for the system
is given by the following equation:

2a(1 + pm
Rim) = max [0 0] o9
0<e <z 84
where
1
Po(ptm, ) = W[Ape,l(ﬂya)dﬂ+/I;Pe,l(“ya)dﬂ]

(40)
and P.1(p,a) is given by (17).
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Numerical results given in Section V show that the decrease
in the number of slots due to the bandwidth expansion of
the jittering cancels the gain achieved from the randomness
introduced by jittering and this scheme offers negligible gain
compared to a system without carrier jittering.

B. Scheme II

For this carrier jittering scheme, we need to consider the
effects of the jammers’ CW tones landing on the neighboring
slots as well as the one corresponding to the slot being used by
the communicator at the time. In order to keep the computation
time at a manageable level, we assume that the normalized
hop frequency offsets may take one of A discrete frequencies
uniformly spaced in [ — £z +£m] with equal probability.

Let us consider a particular hop and denote the normalized
hop frequency offset for this hop as ;. We assume that b
is on the order of % and take into account the following
normalized frequencies of the jammers’ CW tones

A ={-(25+4+p),—(1.5+ p)}
Ay = {—(0.54 p),0.5 — p}
Az ={1.5—-p,2.5 - pu}.

(41)
(42)
(43)

The sets A; and A3 corresponds to the normalized locations
of the jammers’ CW tone frequencies in the frequency slots
immediately to the left and right of that used by the com-
municator and A, correspond to those located in the slot
corresponding to the one used by the communicator. Then,
assuming that the hits to the three slots under consideration
are independent, the probability of error can be written as

P = max P,(a) (44)

0<a<l‘2L

where

Py(a) = Zmu){

1
Pl(a,a) . §Ph(1 — Ph)2

2

aE{AIUAzUAg}

Y > Pllaraa).e)

a1€EAL ar €Ay

+ Z Z Py ((a1,0a3),a)

a1€A) a3€A3

+ Z Z P?((G‘Zsa:i)aa):l - i ' P}?(l - Ph)

a2€A; az€A3

E 1 .
+ Z Z P3((a17a2-,(l3),a) . g . P} }
a1 €A ax€A; az3€EA;
(45)

+

w

Here, P’ (a;, ) denotes the conditional error probability given
that one CW jamming tone is present in A; and P>({a;, a;), )
and P3((ai,a;,ax), ) are the probability of error given that
there are two and three interfering CW tones are present
in {A4;,A;} and {A:, Aj, Ay}, respectively. The value for
Py(a;, a) is computed using (17) and those of Py((a;,a;), @)
and P3((a;,a;.ai),«) are estimated through Monte Carlo
simulations using (5) and (6) for the numerical results. Also,
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pulp) = A—lj denotes the probability mass function of the
discrete random variable x. We note that as % increases (as
Py, decreases,) the contribution of the triple summation term
in (45) becomes smaller due to the P,f term. Similar argument
holds for the double summation terms (terms involving the P,?
term) for larger ﬁ—i, and the single summation term which can
be analytically computed from (17) will be the only significant
term for this case.

If we assume that the only significant term is that due to
a jammer having a single tone falling within the slot being
jammed (but offset from either of the tones being transmitted),
then it is possible to show that for large ﬁ—z the error
probability can be expressed in the following form for the
worst case jammer when the normalized carrier is uniformly

distributed between —p,,, and + ;.

K,
P = , Ey/N;>K 46
1 B/, »/Nj > Ko (46)
and the optimal jamming fraction P
K>
Py = , Ey/Nj;> Ks. 47
h Fu/N;’ »/Ny > Ko 47

The numerical values for K; and K5 depend on the maximum
jittering level p,,,. For p1,,, = 0.5, the values for K; and K>
are Ky = 0.488 and K5 = 1.49, respectively.

V. NUMERICAL RESULTS

Numerical results are presented in this section. We begin
with the error performance of orthogonal BFSK signaling
under CW tone interference. First, we consider the case when
the background noise is negligible and there is one interfering
CW tone. The probability of error as a function of the
normalized frequency offset ; = & f7T for various values of
« are shown in Fig. 3. We see that when o < 1 (jammer
has larger power than the communicator,) there is a region
around y = £3 where the probability of error is 3. In this
region, the interferer is able to inject enough energy into the
wrong correlator forcing the demodulator to make erroneous
decisions even though the frequency of the interfering signal
has a nonzero frequency offset from the frequencies of the
BFSK signals. When « > 1 (jammer has less power than the
communicator), there are regions of p where the probability
of error is nonzero even though the CW tone is not able to
cause any errors when the frequency offset p is either +%
or —%. This is because when there is a nonzero frequency
offset, the interfering CW tone affects both of the correlator
outputs corresponding to b = +1 and —1. The maximum
error probability in this case is obtained when p = 0, i.e.,
when the jamming signal is placed at the midpoint between the
BFSK frequencies. As « increases beyond a certain point, e.g.,
a > 1.62 the probability of error becomes zero for all values of
- Hence, as with the case when the interfering signal is placed
at either of the BFSK frequencies, there is a minimum power
that the interfering signal must have in order to cause errors
with a nonzero probability. In Fig. 4, the probability of error is
plotted for the case when a = 0.01, i.e., the interfering signal
has 20 dB more power than the communicator. We observe
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Fig. 3. Probability of error for one interfering CW tone and no background
noise for « = 0.1,0.5,0.9,1.0,1.1,1.3,1.6.
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Fig. 4. Probability of error for one interfering CW tone and no background
noise for o = 0.01.

that the p axis is divided into regions where the probability of
error is nonzero and regions where the probability of error is
nonzero. This is due to the fact that for values of y near n — %
when b = +1 (orn+% whenb= —1,)forn = +1,+2,43.. .,
the contribution of the interfering signal to the output of the
wrong correlator is very small [see (10)]. Next in Fig. 5, we
plot the average probability of error for the case when y has a
uniform distribution on [— iy, +m] for & = 0.1,0.5,1.0 and
1.5 as a function of p,,. We note that there exits a nonzero
Mm that maximizes the probability of error for small values of
a as may be expected from Fig. 3.

In Fig. 6, the probability of error is plotted for various
values of o when the background noise is present and the
signal-to-noise ratio % is 10 dB. We note that the outer
sidelobes which were present only for very small values of
o when the background noise was neglected are present for
all values of o though they decrease rather quickly as o and
u increase. Moreover, the jamming tone can cause significant
degradation even for values of « that cause no errors when
background noise is negligible.
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Fig. 5. Probability of error for one interfering CW tone and no background
noise when the frequency offset is uniformly distributed on [—gm, ptm].

100
@ Gl
5 N
1o A A\
HOYONY)
0 a\l
_— AJAL ¢
B (R ST\ WS
- f N | 1. | )
3 O A | | .
2 AN 25 | AN
Z RN 30 M\ 1LY
: LUA L
= 102 5 ./\ bfbopast Jatpke) '.,'A'. A
YA 1 1T LIND) I L8 A W . 5 A X
LA | VIl \Y ¥ SN Y 4 0 A N ¥
L WO A Y 4 1 Uin .. L. LI SOUO0 YO A VY J
WPV A A WA AN AW
10°
3 4 2 0 2 4 6
i

Fig. 6. Probability of error for one interfering CW tone with background
noise for o = 0.1,0.5,1.0, 1.6, 2.0, 2.5, 3.0, and E} /Ny = 10 dB.

Now we consider the error performance of FHSS systems
with the two types of carrier jittering scheme described in
Section IV. First in Fig. 7, we show the uncoded error proba-
bility for a FHSS system employing Scheme I carrier jittering
against a one-dimensional tone jammer versus % computed
from (39) with p,,, as the parameter. The case when p,,, = 0.0
denotes the case when there is no carrier jittering. We note that
the gain achieved by randomizing the hopping frequencies is
negligible (less than % dB) for this type of jittering scheme.
This is explained by the fact that the decrease in the probability
of error when a hop is hit is countered by an increase in the
probability of hit by the jammer. Next, the performance of a
FHSS system using Scheme II carrier jittering is considerd.
It is assumed that y is equally likely to be any one of the
values in {—0.5,—0.4,---,0.4,0.5}. The error performance

is computed using (45) or lower bounds to (45)* as described

3Note that (45) itself is a lower bound since it only takes into account the
effects of hits from the slots adjacent to the one being used.
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jittering under one-dimensional tone jamming.

below. The error performance curves for the following cases
are plotted in Fig. 8.

1) FHSS system without carrier jittering.

2) Scheme II carrier jittering using (45).

3) Scheme II carrier jittering using (45) but ignoring the
triple summation term involving P?. This provides a
lower bound for case 2.

4) Scheme II carrier jittering using (45) but ignoring the
triple and double summation terms involving P? and
P3. This provides a lower bound for case 3 and thus
for case 2.

5) FHSS system under worst case partial-band noise jam-
ming [10] with worst case symbol error probability
PPBNJ given by

_ By
Pppny = 3 _QlNo’ f‘% < 3.01.dB (48)
m, ~e > 3.01 dB.

We note that both case 3 and case 4 turn out to be very tight

lower bounds to the actual error probability and provide results

that are within a fraction of a dB from the actual values for
error probability less than 10! for case 3 and 102 for case

4. The last bound (case 4) is especially useful since it does

not involve Monte Carlo simulations to estimate the error

probabilities for the cases involving two or three simultaneous

CW jamming tones. From these figures we find that by

employing Scheme II carrier jittering, the communicator gains

approximately 3 dB compared to a system without carrier
jittering and offers performance within one dB from the partial-
band noise jamming case. This verifies the inspection made in

[8] that a reasonable penalty on the jammer for not knowing

the exact band structure of the communicator is about 3 dB.

VI. CONCLUSION

In this paper, expressions were derived for the probability
of error for orthogonal BFSK signaling when the channel is
corrupted by CW tone interference with arbitrary frequency
offsets and AWGN. We observed that for certain values of
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jittering under one-dimensional tone jamming.

frequency offsets, an interfering CW tone with very large
power could have no effect on the performance of the system.
Also for other values of offsets, interfering tones with power
less than that of the intended signal could cause errors with
significant probability. When the background noise is negligi-
ble, the probability of error was found to be highly dependent
on the frequency offset and the interference power but is less
so for the case when background noise is significant.

The performance of FHSS communications systems em-
ploying two different types of carrier jittering schemes under
one-dimensional tone jamming were considered. We found that
with an appropriate jittering scheme, the communicator gains
about 3 dB compared to a system without carrier jittering and
reduces the effectiveness of the one-dimensional tone jammer
to within a fraction of the partial-band noise jammer.
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